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We analyze the damping induced by a homogeneous and isotropic viscoelastic
layer embedded between a rigid solid cylinder of radius r

1
and a homogeneous and

isotropic elastic hollow cylinder of inner and outer radii r
2

and r
3

respectively. The
composite cylinder is deformed by holding the inner cylinder "xed and applying
a periodic displacement K"K

0
sinut to the outermost cylindrical surface. We

assume that the length of the cylinder is very large as compared to r
3
. Thus, the

deformations are assumed to be functions of the radial co-ordinate r and time t. We
use a set of orthonormal cylindrical basis vectors to describe deformations of the
viscoelastic and elastic layers which are presumed to be made of incompressible
materials. Also, the e!ect of inertia forces has been assumed to be negligible.

In the absence of body forces, quasistatic deformations of the viscoelastic and
elastic layers are governed by the following equations expressing the balance of
linear momentum:

L¹
rr

Lr
#

¹
rr
!¹hh
r

"0,
L¹

rh
Lr

#

2
r
¹
rh"0. (1)

Here, T is the Cauchy stress tensor, and ¹
rr
, ¹hh , and ¹

rh its physical components in
the cylindrical co-ordinate system. The pertinent boundary and interface
conditions are
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Superscripts e and v signify quantities for the elastic and viscoelastic layers
respectively. Equations (2)

1
, (2)

2
and (2)

3
guarantee the continuity of surface

tractions and displacements across the viscoelastic/elastic layer interface. Similarly,
equations (2)6}7 ensure that the viscoelastic layer is perfectly bonded to the inner
stationary rigid cylinder. Equations (2)

4
and (2)

5
imply that the normal tractions
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vanish on the outermost cylindrical surface r"r
3

and tangential displacements
uh are prescribed on it.

Equations (1) and (2) are supplemented by the following constitutive relations for
the elastic and viscoelastic layers:
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Here, b
1

and b
2

are constants, p
1

and p
2

hydrostatic pressure "elds in the elastic
and viscoelastic layers, respectively, U

0
is an instantaneous elastic modulus, c is the

relaxation time, B the left Cauchy}Green tensor and E
t
(q) the relative Green}St

Venant strain tensor. Note that b
1

equals the shear modulus at zero strain for the
elastic layer, and p

1
and p

2
are generally non-zero in the stress-free reference

con"gurations of the elastic and viscoelastic layers. We note that
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where F is the deformation gradient, F
t
(q) the relative deformation gradient, and

1 is the identity tensor. Equation (3)
1

implies that the elastic layer is made of
a Mooney material (see e.g., Truesdell and Noll [1]), and the constitutive relation
(3)

2
for the viscoelastic layer is taken from the Fosdick and Yu's paper [2].

We assume that the deformation "eld in the two layers is given by

r"R, h"H#f (r, t), (5)

where Mr, hN are the co-ordinates in the present con"guration of the material point
that occupied the place MR,H) in the reference con"guration. The physical
components of the deformation gradient, the left Cauchy}Green strain tensor, and
the relative Green}St Venant strain tensor are
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We now conclude from equations (3)}(5), (2)
7
, and (2)

5
that
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where i(t)"f (r
2
, t) describes the angular displacement of a point on the interface

between the two layers. Equations (3)}(5), and (2)
2

yield
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In order to solve this integral equation, we introduce an auxilliary variable,
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and note that
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where f0 "df/dt. Thus, equation (11) can be written as
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The elimination of f from equations (13) and (14) results in the ordinary di!erential
equation
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whose solution is
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From equation (3), we see that the shear stress in the composite cylinder is given by
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and it satis"es the equilibrium equation (1)
2
. For the deformation "eld (5), damping

is induced only by the shear stress ¹
rh . Therefore, we omit "nding normal stresses

and pressure "elds from equation (1)
1

and the pertinent boundary condition in
equation (2). The energy dissipated, D, per unit length of the cylinder in a cycle
equals the work done by the viscous part of the stress in equation (3)

2
. That is,
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where ¹v
d

equals the third term on the right-hand side of equation (3)
2

and D is the
strain-rate tensor de"ned by

D"1
2
(FQ F~1#F~1TFQ T). (21)

Unless otherwise speci"ed, numerical results have been computed by setting
u"0)1, K

0
"1, r

1
"1)0, r

3
"5, U

0
/b

1
"b

2
/b

1
"0)1. The results presented below
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dissipated per cycle.
Figure 1 depicts, for r

2
"2, 3 and 4, the angular displacement "eld f (r, t) and the

shear stress ¹
rh at t"5n when the applied tangential displacement is maximum,

and at t"10n when the applied tangential displacement is zero. At t"5n, we see
that the amplitude of the motion of the interface decreases with a decrease in the
thickness of the viscoelastic layer implying thereby that a higher percentage of
the prescribed tangential displacement is taken up by the elastic layer as the
viscoelastic layer becomes thinner. The corresponding maximum shear stress is also
higher for a thinner viscoelastic layer. Due to the material relaxation, at t"10n we
see that the &&residual'' angular displacement of the interface is higher for the thinner
viscoelastic layer, and the magnitude of the shear stress at the viscoelastic
layer/rigid cylinder interface increases slowly with a decrease in the thickness of the
viscoelastic layer.

Figure 2 exhibits the angular displacement "eld f (r, t) for r
2
"3 and t"5n and

10n for c"1, 5 and 10. The computed values of i(t)"f (3, t) for di!erent values of



Figure 1. Deformation "eld f (r, t) and (b) shear stress ¹
rh versus r for di!erent thicknesses of the

viscoelastic layer (c"10).

Figure 2. Deformation "eld f (r, t) and (b) shear stress ¹
rh versus r for di!erent values of the material

relaxation time c (r
2
"3).
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the relaxation time, c, revealed that the values of i(5n) are not a!ected much by the
value of c. However, at t"10n, the angular displacement of the interface is larger
for the material that takes longer to relax. This is also true for the values of the
shear stress.



Figure 3. Energy loss per cycle, D
n
, as a function of the relaxation time c for di!erent thicknesses of

the viscoelastic layer.
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Figure 3 shows, for di!erent layer thicknesses, the energy dissipated per cycle
versus the relaxation time, c. We see that the value of c signi"cantly a!ects the
energy dissipated per cycle. For the "xed radius of the inner solid cylinder and the
"xed outer radius of the outer elastic cylinder, the energy dissipated/cycle "rst
increases with an increase in the thickness of the viscoelastic layer and then
decreases implying thereby that an optimum thickness of the viscoelastic layer
results in the maximum energy dissipated/cycle. Our calculations show that the
energy dissipation is maximum when r

2
+1)06.

Figure 4 evinces the e!ect of the inner radius on the damping e!ect of the
constrained layer. Here, we choose the values r

1
"1,10,100 and keep the values

r
2
!r

1
"r

3
!r

2
"2.

Figure 5 exhibits the energy dissipation as a function of c for three values,
namely, 0)1, 0)5, and 1)0 of U

0
/b

1
. We see that the energy dissipation "rst

increases, reaches a plateau and then decreases with an increase in the value of the
relaxation time. Results plotted in Figure 5 suggest that D

n
is maximum when
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). Therefore, for optimum damping the value of



Figure 4. Energy loss per cycle, D
n
, as a function of the relaxation time c for di!erent values of the

inner radius.

Figure 5. Energy loss per cycle, D
n
, as a function of the relaxation time c for three di!erent values of

U
0
/b

1
(r
2
"1)02).
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c decreases with an increase in the value of U
0
/b

1
. For twisting of a homogeneous

and isotropic viscoelastic cylinder, Batra and Yu [3] found that the energy
dissipated per cycle is maximum when c"1/u. Thus, for shearing deformations of
the constrained layer, the elastic modulus and the thickness of the bounding layer
a!ect the energy dissipated in the viscoelastic layer.

We note that the aforegiven procedure can be used to analyze "nite shearing
deformations of a composite cylinder made of di!erent viscoelastic layers.
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